ECVAM retrospective validation of in vitro micronucleus test (MNT)

Mutagenesis. 2008 Jul;23(4):271-83. doi: 10.1093/mutage/gen010. Epub 2008 Mar 7.

Abstract

In the past decade several studies comparing the in vitro chromosome aberration test (CAT) and the in vitro micronucleus test (MNT) were performed. A high correlation was observed in each of the studies (>85%); however, no formal validation for the micronucleus in vitro assay had been carried out. Therefore, a working group was established by the European Centre for the Validation of Alternative Methods (ECVAM) to perform a retrospective validation of the existing data, in order to evaluate the validity of the in vitro MNT on the basis of the modular validation approach. The primary focus of this retrospective validation was on the evaluation of the potential of the in vitro MNT as alternative to the standard in vitro CAT. The working group evaluated, in a first step, the available published data and came to the conclusion that two studies [German ring trial, von der Hude, W., Kalweit, S., Engelhardt, G. et al. (2000) In-vitro micronucleus assay with Chinese hamster V79 cells: results of a collaborative study with 26 chemicals. Mutat. Res., 468, 137-163, and SFTG International Collaborative Study, Lorge, E., Thybaud, V., Aardema, M., Oliver, J., Wataka, A., Lorenzon, G. and Marzin, D. (2006) SFTG International Collaborative Study on in-vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat. Res., 607, 13-36] met the criteria for a retrospective validation according to the criteria previously defined by the working group. These two studies were evaluated in depth (including the reanalysis of raw data) and provided the information required for assessing the reliability (reproducibility) of the test. For the assessment of the concordance between the in vitro MNT and the in vitro CAT, additional published data were considered. Based on this retrospective validation, the ECVAM Validation Management Team concluded that the in vitro MNT is reliable and relevant and can therefore be used as an alternative method to the in vitro CAT. Following peer review, these conclusions were formally endorsed by the ECVAM Scientific Advisory Committee.

Publication types

  • Multicenter Study

MeSH terms

  • Animals
  • CHO Cells
  • Cells, Cultured
  • Cricetinae
  • Cricetulus
  • Europe
  • Humans
  • Mice
  • Micronucleus Tests / methods*
  • Micronucleus Tests / standards
  • Reproducibility of Results
  • Retrospective Studies
  • Societies, Scientific
  • Technology Transfer