Self-assembly of rod-coil-rod ABA-type triblock copolymers

J Chem Phys. 2008 Feb 21;128(7):074904. doi: 10.1063/1.2831802.

Abstract

Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain. When 0.3<f(rod)<0.7, the intramolecular interactions between the two rigid blocks of the polymer chain are decrease, which results in the occurrence of some interesting metastable mixed structures. These structures have not been observed in polymers containing only one rod block, such as a lamellar-alt-lamellar structure. The results are expected to provide guidance for the design of microstructures in experiments.