Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale

Comput Methods Biomech Biomed Engin. 2008 Apr;11(2):147-57. doi: 10.1080/10255840802296913.

Abstract

This paper addresses the relationships between the microscopic properties of bone and its elasticity at the millimetre scale, or mesoscale. A method is proposed to estimate the mesoscale properties of cortical bone based on a spatial distribution of acoustic properties at the microscopic scale obtained with scanning acoustic microscopy. The procedure to compute the mesoscopic stiffness tensor involves (i) the segmentation of the pores to obtain a realistic model of the porosity; (ii) the construction of a field of anisotropic elastic coefficients at the microscopic scale which reflects the heterogeneity of the bone matrix; (iii) finite element computations of mesoscopic homogenized properties. The computed mesoscopic properties compare well with available experimental data. It appears that the tissue anisotropy at the microscopic level has a major effect on the mesoscopic anisotropy and that assuming the pores filled with an incompressible fluid or, alternatively, empty, leads to significantly different mesoscopic properties.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Computer Simulation
  • Elasticity
  • Electric Impedance
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • In Vitro Techniques
  • Microscopy, Acoustic / methods*
  • Models, Biological*
  • Radius / physiology*
  • Radius / ultrastructure*
  • Stress, Mechanical