Placing and imaging individual carbon nanotubes on Cu(111) clean surface using in situ pulsed-jet deposition-STM technique

J Nanosci Nanotechnol. 2007 Dec;7(12):4267-71.

Abstract

We report pulsed-jet deposition of single-wall and double-wall carbon nanotubes (SWNTs and DWNTs; CNTs) onto a clean Cu(111) surface and their scanning tunneling microscopy (STM) observations under ultra-high vacuum (UHV). The clean Cu(111) surface prepared by a repeated Ar-sputtering and annealing is introduced into a load-lock chamber kept at a 10(-5)-Pa range vacuum, and the CNTs dispersed in a chloroform solution by ultrasonication are pulse-injected onto the surface. Since the substrate is annealed at 700 K to remove the residual solvent molecules, high resolution lattice images of the CNTs are successfully observed by STM. High-resolution chirality-resolved images of the two SWNTs with a metal cluster are also observed, supporting the well accepted growth mechanism of the CNTs from the metal-catalyst cluster. The present pulsed-jet deposition in high-vacuum is superior to the conventional spin-coating or drop-coating techniques for preparing clean and well-defined CNTs on clean surfaces for high-resolution and contamination-free UHV-STM observation.