Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes

IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(4):358-65. doi: 10.1109/58.84275.

Abstract

Predominant thickness-shear frequencies and modes of a crystal plate with electrodes of arbitrary shape and mass distribution are obtained by a finite-element method, based on Mindlin's first-order equations with platings. These frequencies and modes are used in a perturbation method for computing the acceleration sensitivity of crystal resonators with electrodes. Computations are made for a square AT-cut quartz plate that is supported by a four-point mount and coated with identical square and uniform electrodes on the upper and lower faces of the plate. To study the effect of uneven distribution of electrode mass, acceleration sensitivities are calculated when a small mass is added at various locations near the edges of the square electrodes. It is found that the percent increase of the acceleration sensitivity of the resonator with a small added mass to that of the resonator without added mass ranges from 3.8% to 541.7%, depending on the location of the small mass placed at the edges of the electrodes.