Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing

IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(1):50-8. doi: 10.1109/58.184998.

Abstract

The problem of estimation of mean scatterer spacing in an object containing regularly spaced structures is addressed. An autoregressive (AR) spectral estimation method is compared with a conventional fast Fourier transform (FFT)-based approach for this task. Regularly spaced structures produce a periodicity in the power spectrum of ultrasonic backscatter. This periodicity is manifested as a peak in the cepstrum. A phantom was constructed for comparison of the two methods. It contained regularly spaced nylon filaments. It also contained randomly positioned glass spheres that produced incoherent backscatter. In an experiment in which this target was interrogated using broadband ultrasound, the AR spectral estimate offered considerable improvement over the FFT when the analysis gate length was on the order of the structural dimension. Advantages included improved resolution, reduction in bias and variance of scatterer spacing estimates, and greater resistance to ringing artifacts. Data were also acquired from human liver in vivo. AR spectral estimates on human data exhibited a decreased dependence on gate length. These results offer promise for enhanced spatial resolution and accuracy in ultrasonic tissue characterization and nondestructive evaluation of materials.