Homology modeling of breast cancer resistance protein (ABCG2)

J Struct Biol. 2008 Apr;162(1):63-74. doi: 10.1016/j.jsb.2007.12.001. Epub 2007 Dec 15.

Abstract

BCRP (also known as ABCG2, MXR, and ABC-P) is a member of the ABC family that transports a wide variety of substrates. BCRP is known to play a key role as a xenobiotic transporter. Since discovering its role in multidrug resistance, considerable efforts have been made in order to gain deeper understanding of BCRP structure and function. The recent study was aimed at predicting BCRP structure by creating a homology model. Based on sequence similarity with known structures of full-length, NB and TM domain of ABC transporters, TM, NB, and linker regions of BCRP were defined. The NB domain of BCRP was modeled using MalK as a template. Based on secondary structure prediction of BCRP and comparison of the transmembrane connecting regions of known structures of ABC transporters, the TM domain arrangement of BCRP was established and was found to resemble to that of the recently published crystal structure of Sav1866. Thus, an initial alignment of TM domain of BCRP was established using Sav1866 as a template. This alignment was subsequently refined using constrains derived from secondary structure and TM predictions and the final model was built. Finally, the complete homodimer ABCG2 model was generated using Sav1866 as template. Furthermore, known ligands of BCRP were docked to our model in order to define possible binding sites. The results of molecular dockings of known BCRP substrates to the BCRP model were in agreement with recently published experimental data indicating multiple binding sites in BCRP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / chemistry*
  • ATP-Binding Cassette Transporters / genetics*
  • Amino Acid Sequence
  • Binding Sites / genetics
  • Computer Simulation
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Mutation
  • Neoplasm Proteins / chemistry*
  • Neoplasm Proteins / genetics*
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Sequence Homology, Amino Acid

Substances

  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Neoplasm Proteins