Kinetic studies on aminopeptidase M-mediated degradation of human hemorphin LVV-H7 and its N-terminally truncated products

J Pept Sci. 2008 Jul;14(7):797-803. doi: 10.1002/psc.1002.

Abstract

The human hemorphin LVV-H7 belongs to the class of micro-opiod receptor-binding peptides, which also exhibits significant affinity to insulin-regulated aminopeptidase (IRAP) thereby affecting IRAP inhibition. The inhibitory potency towards IRAP is of pharmaceutical interest for the treatment of Alzheimer's disease. Consecutive N-terminal cleavage of the first two amino acid residues of LVV-H7 affects a drastic increase of the binding affinity (V-H7) but ultimately leads to its complete abolition after cleavage of the next amino acid residue (H7). Therefore, we investigated LVV-H7 truncation by aminopeptidase M (AP-M) identified as a LVV-H7 degrading enzyme potentially regulating hemorphin activity towards IRAP in vivo. Using a selective quantitative multi-component capillary zone electrophoretic method (CZE-UV), we analyzed the AP-M-mediated subsequent proteolysis of the hemorphins LVV-H7 (L32-F41), VV-H7 (V33-F41), and V-H7 (V34-F41) in vitro. Incubations were carried out with synthetic hemorphins applied as single substrates or in combination. Maximum velocities (V(max)), catalytic constants (turnover numbers, kcat), and specific enzyme activities (EA) were calculated. L32 cleavage from LVV-H7 happens more than two-times faster (kcat: 140 min(-1) +/- 9%, EA: 1.0 U/mg +/- 9%) than V33 cleavage from VV-H7 (kcat: 61 min(-1) +/- 10%, EA: 0.43 U/mg +/- 10%) or V32 deletion from V-H7 (kcat: 62 min(-1) +/- 8%, EA: 0.46 U/mg +/- 8%). In contrast, we showed that H7 (Y35-F41) was neither degraded by porcine AP-M nor did it act as an inhibitor for this enzyme. Determined turnover numbers were in the same dimension as those reported for dynorphin degradation. This is the first time that AP-M-mediated truncation of natural underivatized LVV-H7 and its physiological metabolites was analyzed to determine kinetic parameters useful for understanding hemorphin processing and designing hemorphin-derived drug candidates.

MeSH terms

  • Amino Acid Sequence
  • CD13 Antigens / metabolism*
  • Hemoglobins / chemistry
  • Hemoglobins / genetics
  • Hemoglobins / metabolism*
  • Humans
  • Kinetics
  • Peptide Fragments / chemistry
  • Peptide Fragments / genetics
  • Peptide Fragments / metabolism*
  • Substrate Specificity

Substances

  • Hemoglobins
  • Peptide Fragments
  • LVV-hemorphin-7
  • CD13 Antigens