Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures

Mol Biol Cell. 2008 Mar;19(3):1271-80. doi: 10.1091/mbc.e07-07-0666. Epub 2008 Jan 16.

Abstract

Cells in glucose-limited Saccharomyces cerevisiae cultures differentiate into quiescent (Q) and nonquiescent (NQ) fractions before entering stationary phase. To understand this differentiation, Q and NQ cells from 101 deletion-mutant strains were tested for viability and reproductive capacity. Eleven mutants that affected one or both phenotypes in Q or NQ fractions were identified. NQ fractions exhibit a high level of petite colonies, and nine mutants affecting this phenotype were identified. Microarray analysis revealed >1300 mRNAs distinguished Q from NQ fractions. Q cell-specific mRNAs encode proteins involved in membrane maintenance, oxidative stress response, and signal transduction. NQ-cell mRNAs, consistent with apoptosis in these cells, encode proteins involved in Ty-element transposition and DNA recombination. More than 2000 protease-released mRNAs were identified only in Q cells, consistent with these cells being physiologically poised to respond to environmental changes. Our results indicate that Q and NQ cells differentiate significantly, with Q cells providing genomic stability and NQ cells providing nutrients to Q cells and a regular source of genetic diversity through mutation and transposition. These studies are relevant to chronological aging, cell cycle, and genome evolution, and they provide insight into complex responses that even simple organisms have to starvation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Culture Techniques
  • Cell Differentiation* / drug effects
  • Gene Expression Regulation, Fungal / drug effects
  • Genes, Fungal
  • Microbial Viability / drug effects
  • Mutation / genetics
  • Oligonucleotide Array Sequence Analysis
  • Peptide Hydrolases / pharmacology
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Reproduction / drug effects
  • Saccharomyces cerevisiae / cytology*
  • Saccharomyces cerevisiae / drug effects
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Signal Transduction / genetics
  • Subcellular Fractions / drug effects

Substances

  • RNA, Messenger
  • Saccharomyces cerevisiae Proteins
  • Peptide Hydrolases