Curcumin inhibits aggregation of alpha-synuclein

Acta Neuropathol. 2008 Apr;115(4):479-89. doi: 10.1007/s00401-007-0332-4. Epub 2008 Jan 10.

Abstract

Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Curcumin / pharmacology*
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / pharmacology*
  • Green Fluorescent Proteins / metabolism
  • Humans
  • Mutation / physiology
  • Neuroblastoma
  • Protein Transport / drug effects
  • Protein Transport / physiology
  • Time Factors
  • Transfection
  • alpha-Synuclein / drug effects*
  • alpha-Synuclein / genetics
  • alpha-Synuclein / metabolism*

Substances

  • Enzyme Inhibitors
  • alpha-Synuclein
  • enhanced green fluorescent protein
  • Green Fluorescent Proteins
  • Curcumin