RhoA activation and actin reorganization involved in endothelial CAM-mediated endocytosis of anti-PECAM carriers: critical role for tyrosine 686 in the cytoplasmic tail of PECAM-1

Blood. 2008 Mar 15;111(6):3024-33. doi: 10.1182/blood-2007-06-098657. Epub 2008 Jan 8.

Abstract

Platelet-endothelial cell adhesion molecule-1 (PECAM-1), a transmembrane glycoprotein involved in leukocyte transmigration, represents a good target for endothelial drug delivery (eg, using antibody-directed nanocarriers, anti-PECAM/NCs). Although endothelial cells do not internalize PECAM antibodies, PECAM-1 engagement by multivalent anti-PECAM conjugates and nanocarriers causes endocytosis via a nonclassic CAM-mediated pathway. We found that endothelial uptake of multivalent anti-PECAM complexes is associated with PECAM-1 phosphorylation. Using model REN cells expressing a series of PECAM-1 deletion and point mutants, we found that the PECAM-1 cytoplasmic domain and, more precisely, PECAM-1 tyrosine 686, is critical in mediating RhoA activation and recruitment of EGFP-RhoA to anti-PECAM/NC binding sites at the plasmalemma, actin polymerization into phalloidin-positive stress fibers, and finally CAM endocytosis of anti-PECAM/NCs. Endothelial targeting and endocytosis of anti-PECAM/NCs were markedly efficient and did not compromise endothelial barrier function in vitro (determined by immunostaining of VE-cadherin and (125)I-albumin transport across endothelial monolayers) or in vivo (determined by electron microscopy imaging of pulmonary capillaries and (125)I-albumin transport from the blood into the lung tissue after intravenous injection of anti-PECAM/NCs in mice). These results reveal PECAM-1 signaling and interactions with the cytoskeleton, which are required for CAM-endocytosis, and may provide safe intra-endothelial drug delivery by anti-PECAM/NCs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actins / metabolism*
  • Animals
  • Antibodies / immunology
  • Cells, Cultured
  • Cytoplasm / metabolism*
  • Endocytosis*
  • Endothelial Cells / metabolism*
  • Enzyme Activation
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Phosphorylation
  • Platelet Endothelial Cell Adhesion Molecule-1 / genetics
  • Platelet Endothelial Cell Adhesion Molecule-1 / immunology*
  • Platelet Endothelial Cell Adhesion Molecule-1 / metabolism*
  • Tyrosine / genetics
  • Tyrosine / metabolism
  • rhoA GTP-Binding Protein / metabolism*

Substances

  • Actins
  • Antibodies
  • Platelet Endothelial Cell Adhesion Molecule-1
  • Tyrosine
  • rhoA GTP-Binding Protein