Assessment of three-dimensional set-up errors in conventional head and neck radiotherapy using electronic portal imaging device

Radiat Oncol. 2007 Dec 14:2:44. doi: 10.1186/1748-717X-2-44.

Abstract

Background: Set-up errors are an inherent part of radiation treatment process. Coverage of target volume is a direct function of set-up margins, which should be optimized to prevent inadvertent irradiation of adjacent normal tissues. The aim of this study was to evaluate three-dimensional (3D) set-up errors and propose optimum margins for target volume coverage in head and neck radiotherapy.

Methods: The dataset consisted of 93 pairs of orthogonal simulator and corresponding portal images on which 558 point positions were measured to calculate translational displacement in 25 patients undergoing conventional head and neck radiotherapy with antero-lateral wedge pair technique. Mean displacements, population systematic (Sigma) and random (sigma) errors and 3D vector of displacement was calculated. Set-up margins were calculated using published margin recipes.

Results: The mean displacement in antero-posterior (AP), medio-lateral (ML) and supero-inferior (SI) direction was -0.25 mm (-6.50 to +7.70 mm), -0.48 mm (-5.50 to +7.80 mm) and +0.45 mm (-7.30 to +7.40 mm) respectively. Ninety three percent of the displacements were within 5 mm in all three cardinal directions. Population systematic (Sigma) and random errors (sigma) were 0.96, 0.98 and 1.20 mm and 1.94, 1.97 and 2.48 mm in AP, ML and SI direction respectively. The mean 3D vector of displacement was 3.84 cm. Using van Herk's formula, the clinical target volume to planning target volume margins were 3.76, 3.83 and 4.74 mm in AP, ML and SI direction respectively.

Conclusion: The present study report compares well with published set-up error data relevant to head and neck radiotherapy practice. The set-up margins were <5 mm in all directions. Caution is warranted against adopting generic margin recipes as different margin generating recipes lead to a different probability of target volume coverage.