Transit time of chirped pulses through one-dimensional, nonabsorbing barriers

Opt Lett. 2002 Feb 1;27(3):176-8. doi: 10.1364/ol.27.000176.

Abstract

Experiments show that the transit times of chirped, narrow-band pulses that move across nonabsorbing, one-dimensional barriers are modified dramatically by the interplay between the chirp and the transmission function of the sample. In an experiment we monitored 0.9-ns chirped, nearly Gaussian pulses as they traversed a 450-mum GaAs etalon. At certain wavelengths pulse transit times can be superluminal or even negative. To explain these phenomena we have proposed a generalization of the transit time for chirped pulses that is still meaningful even when the transit times are superluminal or negative. Our predictions agree well with the experimental results.