Mechanism for hydrotalcite decomposition: a controlled rate thermal analysis study

J Colloid Interface Sci. 2008 Feb 15;318(2):302-8. doi: 10.1016/j.jcis.2007.10.033. Epub 2007 Oct 26.

Abstract

The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. Hydrotalcites containing carbonate, vanadate and molybdate were prepared by coprecipitation. The resulting materials were characterised by XRD, simultaneous TG-DTG-DTA and controlled rate thermal analysis (CRTA) to determine the stability and thermal decomposition pathway of the synthesised hydrotalcites. For the carbonate intercalated hydrotalcite dehydration takes place in three steps two of which are quasi-isothermal and one non-isothermal. Dehydroxylation and decarbonation occur separately over the 235-330 and 330-370 degrees C temperature range. A second non-isothermal decarbonation step is observed in the 371-541 degrees C range. In comparison the mixed carbonate-vanadate and carbonate-molybdate hydrotalcites show two dehydration steps and the dehydroxylation and decarbonation occur simultaneously. The observation of three dehydration steps is used to support the model of water molecules in three structurally distinct environments in the hydrotalcite interlayer. CRTA technology provides a mechanism for the decomposition of hydrotalcites.