Nanoparticle-polymer photovoltaic cells

Adv Colloid Interface Sci. 2008 Apr 21;138(1):1-23. doi: 10.1016/j.cis.2007.09.001. Epub 2007 Oct 5.

Abstract

The need to develop and deploy large-scale, cost-effective, renewable energy is becoming increasingly important. In recent years photovoltaic (PV) cells based on nanoparticles blended with semiconducting polymers have achieved good power conversion efficiencies (PCE). All the nanoparticle types used in these PV cells can be considered as colloids. These include spherical, rod-like or branched organic or inorganic nanoparticles. Nanoparticle-polymer PV cells have the long-term potential to provide low cost, high-efficiency renewable energy. The maximum PCE achieved to date is about 5.5%. This value should rise as recently reported theoretical predictions suggest 10% is achievable. However, there are a number of challenges that remain to be overcome. In this review two general types of nanoparticle-polymer PV cells are considered and compared in detail. The organic nanoparticle-polymer PV cells contain fullerene derivatives (e.g., phenyl C61-butyric acid methyl ester, PCBM) or single-walled nanotubes as the nanoparticle phase. The second type is hybrid inorganic nanoparticle-polymer PV cells. These contain semiconducting nanoparticles that include CdSe, ZnO or PbS. The structure-property relationships that apply to both the polymer and nanoparticle phases are considered. The principles underlying nanoparticle-polymer PV cell operation are also discussed. An outcome of consideration of the literature in both areas are two sets of assembly conditions that are suggested for constructing PCBM-P3HT (P3HT is poly(3-hexylthiophene)) or CdSe-P3HT PV cells with reasonable power conversion efficiency. The maximum PCE reported for organic nanoparticle PV cells is about twice that for inorganic nanoparticle-polymer PV cells. This appears to be related to morphological differences between the respective photoactive layers. The morphological differences are attributed to differences in the colloidal stability of the nanoparticle/polymer/solvent mixtures used to prepare the photoactive layers. The principles controlling the colloid stability of the nanoparticle/polymer/solvent mixtures are discussed.