Protection of lithium metal surfaces using chlorosilanes

Langmuir. 2007 Nov 6;23(23):11597-602. doi: 10.1021/la701662r. Epub 2007 Oct 16.

Abstract

In this paper, we present a new approach for protecting metallic lithium surfaces based on a reaction between the thin native layer of lithium hydroxide present on the surface and various chlorosilane derivatives. The chemical composition of the resulting layer and the chemistry involved in layer formation were analyzed by polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDX). Spectroscopy shows the disappearance of surface hydroxide groups and the appearance of silicon and chloride on the lithium surface. Differential scanning calorimetry (DSC) and electrochemical impedance spectroscopy (EIS) show that this surface treatment protects the lithium from certain gas-phase reactions and is ionically conductive.