Geometric and electronic structure of methane adsorbed on a Pt surface

J Chem Phys. 2007 Oct 14;127(14):144702. doi: 10.1063/1.2781470.

Abstract

The electronic structure of methane adsorbed on Pt(977) is investigated using angle-resolved x-ray absorption spectroscopy (XAS) in combination with density functional theory spectrum calculations. XAS, which probes the unoccupied states atom specifically, shows the appearance of the symmetry-forbidden gas-phase lowest unoccupied molecular orbital due to s-p rehybridization. In addition new adsorption-induced states appear just above the Fermi level. A systematic investigation, where computed XA spectra are compared with the experiment, indicates elongation of the C-H bond pointing toward the surface to 1.18+/-0.05 A. The bond elongation arises due to mixing between bonding and antibonding C-H orbitals. Computed charge density difference plots show that no covalent chemical bond is formed between the adsorbate and substrate upon adsorption. The changes in electronic structure arise in order to minimize the Pauli repulsion by polarizing charge away from the surface toward the carbon atom of the methane molecule.