Dynamics of energy condensation in two-dimensional turbulence

Phys Rev Lett. 2007 Aug 24;99(8):084501. doi: 10.1103/PhysRevLett.99.084501. Epub 2007 Aug 21.

Abstract

We report a numerical study, supplemented by phenomenological explanations, of "energy condensation" in forced 2D turbulence in a biperiodic box. Condensation is a finite size effect which occurs after the standard inverse cascade reaches the size of the system. It leads to the emergence of a coherent vortex dipole. We show that the time growth of the dipole is self-similar, and it contains most of the injected energy, thus resulting in an energy spectrum which is markedly steeper than the standard k{-5/3} one. Once the coherent component is subtracted, however, the remaining fluctuations have a spectrum close to k{-1}. The fluctuations decay slowly as the coherent part grows.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation*