Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036712. doi: 10.1103/PhysRevE.76.036712. Epub 2007 Sep 28.

Abstract

The multidimensional formulation of the quantum lattice Boltzmann (qLB) scheme is extended to the case of nonlinear quantum wave equations. More specifically, imaginary-time formulations of the qLB scheme are developed and applied to the numerical computation of the ground state of the Gross-Pitaevskii equation in one and two spatial dimensions. The calculation is validated through detailed comparison with other numerical methods, as well as with analytical results based on the Thomas-Fermi approximation. The linear scaling of the time-step size with the spatial mesh spacing, a distinctive feature of the present quantum kinetic approach, is also numerically demonstrated.