Mapping QTLs of root morphological traits at different growth stages in rice

Genetica. 2008 Jun;133(2):187-200. doi: 10.1007/s10709-007-9199-5. Epub 2007 Sep 7.

Abstract

Roots are a vital organ for absorbing soil moisture and nutrients and influence drought resistance. The identification of quantitative trait loci (QTLs) with molecular markers may allow the estimation of parameters of genetic architecture and improve root traits by molecular marker-assisted selection (MAS). A mapping population of 120 recombinant inbred lines (RILs) derived from a cross between japonica upland rice 'IRAT109' and paddy rice 'Yuefu' was used for mapping QTLs of developmental root traits. All plant material was grown in PVC-pipe. Basal root thickness (BRT), root number (RN), maximum root length (MRL), root fresh weight (RFW), root dry weight (RDW) and root volume (RV) were phenotyped at the seedling (I), tillering (II), heading (III), grain filling (IV) and mature (V) stages, respectively. Phenotypic correlations showed that BRT was positively correlated to MRL at the majority of stages, but not correlated with RN. MRL was not correlated to RN except at the seedling stage. BRT, MRL and RN were positively correlated to RFW, RDW and RV at all growth stages. QTL analysis was performed using QTLMapper 1.6 to partition the genetic components into additive-effect QTLs, epistatic QTLs and QTL-by-year interactions (Q x E) effect. The results indicated that the additive effects played a major role for BRT, RN and MRL, while for RFW, RDW and RV the epistatic effects showed an important action and Q x E effect also played important roles in controlling root traits. A total of 84 additive-effect QTLs and 86 pairs of epistatic QTLs were detected for the six root traits at five stages. Only 12 additive QTLs were expressed in at least two stages. This indicated that the majority of QTLs were developmental stage specific. Two main effect QTLs, brt9a and brt9b, were detected at the heading stage and explained 19% and 10% of the total phenotypic variation in BRT without any influence from the environment. These QTLs can be used in breeding programs for improving root traits.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Mapping*
  • Gene Expression Regulation, Developmental
  • Gene Expression Regulation, Plant
  • Genetic Linkage
  • Organ Size / genetics
  • Oryza / genetics*
  • Oryza / growth & development*
  • Plant Roots / anatomy & histology*
  • Plant Roots / genetics
  • Plant Roots / growth & development
  • Quantitative Trait Loci*