Two complementary routes to 7-substituted chlorins. Partial mimics of chlorophyll B

J Org Chem. 2007 Sep 28;72(20):7736-49. doi: 10.1021/jo701500d. Epub 2007 Sep 6.

Abstract

Chlorophyll a and chlorophyll b exhibit distinct spectra yet differ only in the nature of a single substituent (7-methyl versus 7-formyl, respectively). Two complementary approaches have been developed for the synthesis of 7-substituted chlorins. The first approach is a de novo route wherein 2,9-dibromo-5-p-tolyldipyrromethane (Eastern half) and 9-formyl-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (Western half) undergo acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The resulting zinc chlorin is sterically uncongested and bears (1) a geminal dimethyl group in the reduced, pyrroline ring, (2) a bromo substituent at the 7-position, and (3) a p-tolyl group at the 10-position. The second approach entails regioselective 7-bromination of a 10,15-diarylchlorin that lacks a substituent at the 5-position. In an extension of this latter approach, a 5,15-diarylchlorin that lacks a substituent at the 10-position undergoes regioselective bromination at the 8-position. The introduction of a TIPS-ethynyl, acetyl, or formyl group at the 7-position was achieved using Pd-catalyzed reactions with the corresponding 7-bromochlorin. In the 10-p-tolyl-substituted zinc chlorins, the series of substituents (7-TIPS-ethynyl, 7-acetyl, 7-formyl) progressively causes (1) a bathochromic shift in the absorption maximum of the B band (405 to 426 nm) and (2) a hypsochromic shift in the position of the Qy band (605 to 598 nm). The trends mirror those for chlorophyll b versus chlorophyll a but are of lesser magnitude. Taken together, the facile access to chlorins that bear auxochromes at the 7-position enables wavelength tunability and provides the foundation for fundamental spectroscopic studies.