The fluorobenzene-argon S(1) excited-state intermolecular potential energy surface

J Phys Chem A. 2007 Aug 16;111(32):7876-81. doi: 10.1021/jp0733015. Epub 2007 Jul 21.

Abstract

We evaluate the first excited-state (S1) intermolecular potential energy surface for the fluorobenzene-Ar van der Waals complex using the coupled cluster method and the augmented correlation-consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. To calculate the S(1) interaction energies, we use ground-state interaction energies evaluated with the same basis set and the coupled cluster singles and doubles (CCSD) including connected triple excitations [CCSD(T)] model and interaction and excitation energies evaluated at the CCSD level. The surface minima are characterized by the Ar atom located above and below the fluorobenzene ring at a distance of 3.5060 A with respect to the fluorobenzene center of mass and at an angle of 5.89 degrees with respect to the axis perpendicular to the fluorobenzene plane. The corresponding interaction energy is -425.226 cm(-1). The surface is used in the evaluation of the intermolecular level structure of the complex, and the results are compared to the experimental data available and to those found in previous theoretical papers on ground-state potentials for similar complexes.