SPM characterization of pulsed laser deposited nanocrystalline CrN hard coatings

J Nanosci Nanotechnol. 2007 Jun;7(6):2176-81. doi: 10.1166/jnn.2007.790.

Abstract

Nanocrystalline CrN coatings, widely required for surface engineering application covering wear and corrosion resistance, need to be investigated for atomic scale morphology, surface roughness, local stiffness, phase uniformity, and homogeneity. Evolution of these properties as a function of thickness need to be studied. In this paper, we have attempted to address these issues through use of a multimode scanning probe microscope (SPM) equipped to carry out Atomic Force Microscopy (AFM) and Atomic Force Acoustic microscopy (AFAM) of Chromium nitride films (100-500 nm thick) on Si prepared under high vacuum by pulsed Laser Ablation using Nd-YAG Q-switched laser. Prior to SPM analysis, the coatings were annealed in N2 atmosphere at 700 degrees C for 30 minutes for improving crystallanity and coating substrate adhesion. The GIXRD patterns of these annealed specimens showed formation of nanocrystalline CrN. Also signature of amorphous phases was seen. The grain size was estimated to be less than 30 nm. Contact mode AFM imaging revealed a roughness value less than 50 nm. Local stiffness values were calculated from AFM force-distance curves. Imaging of frictional force and surface flaws are being investigated by Frictional Force Microscopy (FFM), resonance spectroscopy, and AFAM, respectively. The contrast in AFAM images is seen due to variation in surface elasticity in reference and CrN samples. Stiffness constant and elastic modulus were calculated for both the samples and compared.