Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases

Plant Physiol. 2007 Sep;145(1):5-16. doi: 10.1104/pp.107.101162. Epub 2007 Jul 20.

Abstract

Plant glycoproteins contain substantial amounts of paucimannosidic N-glycans lacking terminal GlcNAc residues at their nonreducing ends. It has been proposed that this is due to the action of beta-hexosaminidases during late stages of N-glycan processing or in the course of N-glycan turnover. We have now cloned the three putative beta-hexosaminidase sequences present in the Arabidopsis (Arabidopsis thaliana) genome. When heterologously expressed as soluble forms in Spodoptera frugiperda cells, the enzymes (termed HEXO1-3) could all hydrolyze the synthetic substrates p-nitrophenyl-2-acetamido-2-deoxy-beta-d-glucopyranoside, p-nitrophenyl-2-acetamido-2-deoxy-beta-d-galactopyranoside, 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-d-glucopyranoside, and 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-beta-d-glucopyranoside, albeit to a varying extent. HEXO1 to HEXO3 were further able to degrade pyridylaminated chitotriose, whereas pyridylaminated chitobiose was only cleaved by HEXO1. With N-glycan substrates, HEXO1 displayed a much higher specific activity than HEXO2 and HEXO3. Nevertheless, all three enzymes were capable of removing terminal GlcNAc residues from the alpha1,3- and alpha1,6-mannosyl branches of biantennary N-glycans without any strict branch preference. Subcellular localization studies with HEXO-fluorescent protein fusions transiently expressed in Nicotiana benthamiana plants showed that HEXO1 is a vacuolar protein. In contrast, HEXO2 and HEXO3 are mainly located at the plasma membrane. These results indicate that HEXO1 participates in N-glycan trimming in the vacuole, whereas HEXO2 and/or HEXO3 could be responsible for the processing of N-glycans present on secretory glycoproteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Arabidopsis / enzymology*
  • Arabidopsis / genetics
  • Cloning, Molecular
  • DNA, Complementary
  • Gene Expression
  • Humans
  • Molecular Sequence Data
  • Proteoglycans / metabolism*
  • Recombinant Proteins / metabolism
  • Spodoptera / genetics
  • Spodoptera / metabolism*
  • beta-N-Acetylhexosaminidases / genetics
  • beta-N-Acetylhexosaminidases / metabolism*

Substances

  • DNA, Complementary
  • Proteoglycans
  • Recombinant Proteins
  • beta-N-Acetylhexosaminidases