Global structure changes associated with Ca2+ activation of full-length human plasma gelsolin

J Biol Chem. 2007 Aug 31;282(35):25884-92. doi: 10.1074/jbc.M702446200. Epub 2007 Jun 29.

Abstract

Gelsolin regulates the dynamic assembly and disassembly of the actin-based cytoskeleton in non-muscle cells and clears the circulation of filaments released following cell death. Gelsolin is a six-domain (G1-G6) protein activated by calcium via a multi-step process that involves unfolding from a compact form to a more open form in which the three actin-binding sites (on the G1, G2, and G4 subdomains) become exposed. To follow the global structural changes that accompany calcium activation of gelsolin, small-angle x-ray scattering (SAXS) data were collected for full-length human plasma gelsolin at nanomolar to millimolar concentrations of free Ca2+. Analysis of these data showed that, upon increasing free Ca2+ levels, the radius of gyration (Rg) increased nearly 12 A, from 31.1+/-0.3 to 43+/-2 A, and the maximum linear dimension (Dmax) of the gelsolin molecule increased 55 A, from 100 to 155A. Structural reconstruction of gelsolin from these data provided a striking visual tracking of the gradual Ca2+-induced opening of the gelsolin molecule and highlighted the critical role played by the flexible linkers between homologous domains. The tightly packed architecture of calcium-free gelsolin, seen from both SAXS and x-ray crystallographic models, is already partially opened up in as low as 0.5 nM Ca2+. Our data confirm that, although the molecule springs open from 0 to 1 microM free Ca2+, even higher calcium concentrations help to stabilize a more open structure, with increases in Rg and Dmax of approximately 2 and approximately 15 A, respectively. At these higher calcium levels, the SAXS-based models provide a molecular shape that is compatible with that of the crystal structures solved for Ca2+/gelsolin C-terminal and N-terminal halves+/-monomeric G-actin. Placement of these crystal structures within the boundaries of the SAXS-based model suggests a movement of the G1/G2 subunits that would be required upon binding to actin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actins / chemistry*
  • Actins / metabolism
  • Calcium / chemistry*
  • Calcium / metabolism
  • Crystallography, X-Ray
  • Cytoskeleton / chemistry
  • Cytoskeleton / metabolism
  • Gelsolin / chemistry*
  • Gelsolin / metabolism
  • Humans
  • Models, Molecular*
  • Protein Binding / physiology
  • Protein Structure, Quaternary / physiology
  • Protein Structure, Tertiary / physiology

Substances

  • Actins
  • Gelsolin
  • Calcium