The heteropolytungstate core {BW13O46}11- derived as monomer, dimer, and trimer

Chemistry. 2007;13(25):7234-45. doi: 10.1002/chem.200601873.

Abstract

A study of the borotungstate system has led to the characterization of new, original compounds based on the unconventional Keggin derivative [H(3)BW(13)O(46)](8-) ion (denoted as 1). [H(3)BW(14)O(48)](6-) (2) and the dimer [H(6)B(2)W(26)O(90)](12-) (3) crystallize as mixed cesium/ammonium salts and have been characterized by single-crystal X-ray diffraction analysis. Anion 2 reveals an unusual arrangement, consisting of an outer {W(3)O(9)} core grafted onto the monovacant [BW(11)O(39)](9-) Keggin moiety and exhibits an unprecedented distorted square-pyramidal arrangement for a cis-{WO(2)} core. Elemental analysis, supported by bond distance analysis, is consistent with the presence of three protons distributed over the terminal oxygens of the outer {W(3)O(7)} capping fragment. The [H(6)B(2)W(26)O(90)](12-) ion (3) is formally derived from the direct condensation of two [H(3)BW(13)O(46)](8-) subunits. The cisoid arrangement of the two [BW(11)O(39)](9-) subunits, coupled with the antiparallel arrangement of the two quasi-linear O=W...O=W-OH2 chains within the central {W(4)O(12)} connecting group, breaks any symmetry, thereby resulting in a chiral compound. Polarography and pH-metric titrations reveal the formation of the monomeric precursor [H(3)BW(13)O(46)](8-) (anion 1) under stoichiometric conditions. (183)W NMR analysis of 2 and 3 in solution gives complex spectra, consistent with the presence of equilibria between several species. In the frame of this study, we also report on a structural re-investigation of the [H(6)B(3)W(39)O(132)](15-) ion (4) based on reliable results obtained in the solid state by means of single-crystal X-ray diffraction analysis, and in solution by means of 1D and 2D COSY (183)W NMR. X-ray diffraction analysis revealed the presence of three attached aquo ligands on the central {W(6)O(15)} connecting core, generating three O=W...O=W-OH2 quasi-linear chains, which are responsible for the chirality of the trimeric assembly. This structural arrangement accounts for the 39-line (183)W solution spectrum. The 2D COSY spectrum permits reliable assignments of the six strongly shielded resonances (around -250 and -400 ppm) to the six central W atoms, as well as additional assignments. The origin of such strong shielding for these particular W atoms is discussed on the basis of previously published results. Infrared data for compounds 1, 3, and 4 are also presented.