Issues in the interpretation of climate model ensembles to inform decisions

Philos Trans A Math Phys Eng Sci. 2007 Aug 15;365(1857):2163-77. doi: 10.1098/rsta.2007.2073.

Abstract

There is a scientific consensus regarding the reality of anthropogenic climate change. This has led to substantial efforts to reduce atmospheric greenhouse gas emissions and thereby mitigate the impacts of climate change on a global scale. Despite these efforts, we are committed to substantial further changes over at least the next few decades. Societies will therefore have to adapt to changes in climate. Both adaptation and mitigation require action on scales ranging from local to global, but adaptation could directly benefit from climate predictions on regional scales while mitigation could be driven solely by awareness of the global problem; regional projections being principally of motivational value. We discuss how recent developments of large ensembles of climate model simulations can be interpreted to provide information on these scales and to inform societal decisions. Adaptation is most relevant as an influence on decisions which exist irrespective of climate change, but which have consequences on decadal time-scales. Even in such situations, climate change is often only a minor influence; perhaps helping to restrict the choice of 'no regrets' strategies. Nevertheless, if climate models are to provide inputs to societal decisions, it is important to interpret them appropriately. We take climate ensembles exploring model uncertainty as potentially providing a lower bound on the maximum range of uncertainty and thus a non-discountable climate change envelope. An analysis pathway is presented, describing how this information may provide an input to decisions, sometimes via a number of other analysis procedures and thus a cascade of uncertainty. An initial screening is seen as a valuable component of this process, potentially avoiding unnecessary effort while guiding decision makers through issues of confidence and robustness in climate modelling information. Our focus is the usage of decadal to centennial time-scale climate change simulations as inputs to decision making, but we acknowledge that robust adaptation to the variability of present day climate encourages the development of less vulnerable systems as well as building critical experience in how to respond to climatic uncertainty.