Quantification of bromine in flame-retardant coatings by radiofrequency glow discharge-optical emission spectrometry

Anal Bioanal Chem. 2007 Oct;389(3):683-90. doi: 10.1007/s00216-007-1372-2. Epub 2007 Jun 13.

Abstract

There is an increasing concern regarding the toxicity and environmental distribution and impact of brominated organic compounds employed as flame retardants. Thus, present interest in searching for new analytical techniques and methods allowing a rapid, simple and reliable detection of those compounds in materials and wastes potentially containing such flame retardants is not surprising. The feasibility of using radiofrequency glow discharge plasma spectrometry coupled with optical emission spectrometry (rf-GD-OES) as a rapid and simple tool to directly analyse bromine-containing flame-retardant polymeric layers is investigated here. Polymeric layers for calibration were made by mixing appropriate amounts of tetrabromobisphenol A, bisphenol A, phloroglucinol and diphenylmethane-4,4'-diisocyanate in tetrahydrofuran. The corresponding blanks (polymers without tetrabromobisphenol A) were also prepared. Detection of bromine was investigated both in the visible (at 470.48 nm) and in the near-infrared (at 827.24 nm) regions, using a charge-coupled device for detection. Discharge parameters affecting the emission intensity of bromine were first optimized (in argon and helium as possible plasma gases) and the analytical performance characteristics were then evaluated. The best detection limit (0.044% Br) was achieved measuring Br I 827.24 nm in a He discharge, using a forward power of 70 W and a pressure of 45 Torr. The linearity range extended up to 27% Br. Finally, the applicability of the rf-GD-OES method proposed to the quantitative analysis of bromine in solid materials coated with flame-retardant commercial paints was successfully demonstrated.