Inter-individual variability among the mechanomyographic and electromyographic amplitude and mean power frequency responses during isometric ramp muscle actions

Electromyogr Clin Neurophysiol. 2007 May-Jun;47(3):161-73.

Abstract

The purpose of this study was to examine the inter-individual variability in the patterns of responses for mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) of the vastus lateralis (VL) and rectusfemoris (RF) muscles during isometric ramp muscle actions of the leg extensors. Fifteen participants (mean +/- SD age = 24 +/- 4 years) performed two or three 6-s isometric ramp muscle actions with linear increases in torque from 15% to 90% of the highest maximal voluntary contraction (MVC) torque. Surface MMG and EMG signals were simultaneously recorded from the VL and RF muscles. The composite (averaged across subjects) and individual patterns of responses for the normalized MMG and EMG amplitude and MPF vs. isometric torque relationships were analyzed. The composite patterns for MMG amplitude for the VL and RF muscles were fit with cubic models, although, only 87% of the individual patterns (13 of 15 subjects) exhibited the same cubic pattern as the composite. For MMG MPF, the composite relationships were also cubic, but only 27% (4 subjects) and 40% (6 subjects) of the individuals exhibited the same patterns for the VL and RF respectively. 60% (8 subjects) of the individual EMG amplitude patterns of responses matched the same curvilinear composite patterns for the VL and RE, while only 7% (1 subject) and 27% (4 subjects) of the EMG MPF responses were similar to the composite models for the VL and RF muscles, respectively. Therefore, since the individual patterns did not always match the composite relationships (i.e., inter-individual variability), these findings suggested that the MMG and EMG amplitude and MPF vs. isometric torque relationships should be examined on a subject-by-subject and muscle-by-muscle basis during isometric ramp muscle actions.

MeSH terms

  • Adult
  • Humans
  • Isometric Contraction / physiology*
  • Myography
  • Quadriceps Muscle / physiology*
  • Reference Values
  • Signal Processing, Computer-Assisted
  • Torque