Layer-by-layer nanoassembly of polyelectrolytes using formamide as the working medium

Langmuir. 2007 Jul 3;23(14):7423-7. doi: 10.1021/la700465n. Epub 2007 May 31.

Abstract

Formamide, in its pure state, has been used as a working solvent for layer-by-layer (LbL) polyelectrolyte self-assembly. Polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) polyelectrolyte films were deposited onto planar substrates and colloidal particles. Film deposition was confirmed using quartz crystal microbalance and zeta potential measurements. Formamide was used as an alternative to the water-based working solvents commonly used for LbL self-assembly. Few LbL self-assembly studies using nonaqueous solvents have been reported. Most studies performed with nonaqueous solvents have required the addition of small volumes of water to dissolve the polyelectrolytes. Conversely, the high dielectric constant of pure formamide led to the dissolution and transport of PSS and PAH. Using formamide, it is possible to deposit nanometer thick polyelectrolyte films onto water-sensitive surfaces. Formamide can be thus be used for encapsulating water sensitive hydrogen storage materials within polyelectrolyte films.