Recent developments in yeast aging

PLoS Genet. 2007 May 25;3(5):e84. doi: 10.1371/journal.pgen.0030084.

Abstract

In the last decade, research into the molecular determinants of aging has progressed rapidly and much of this progress can be attributed to studies in invertebrate eukaryotic model organisms. Of these, single-celled yeast is the least complicated and most amenable to genetic and molecular manipulations. Supporting the use of this organism for aging research, increasing evidence has accumulated that a subset of pathways influencing longevity in yeast are conserved in other eukaryotes, including mammals. Here we briefly outline aging in yeast and describe recent findings that continue to keep this "simple" eukaryote at the forefront of aging research.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Apoptosis
  • Genome, Fungal / genetics
  • Histone Deacetylases / metabolism
  • Humans
  • Oxidative Stress
  • Saccharomyces cerevisiae / cytology*
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / physiology*
  • Silent Information Regulator Proteins, Saccharomyces cerevisiae / metabolism
  • Sirtuin 2
  • Sirtuins / metabolism
  • Time Factors

Substances

  • Silent Information Regulator Proteins, Saccharomyces cerevisiae
  • SIR2 protein, S cerevisiae
  • Sirtuin 2
  • Sirtuins
  • Histone Deacetylases