Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia

J Bacteriol. 2007 Jul;189(14):5247-56. doi: 10.1128/JB.00360-07. Epub 2007 May 4.

Abstract

The vegetative cells of the filamentous cyanobacterium Nostoc punctiforme can differentiate into three mutually exclusive cell types: nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogomium filaments. A DNA microarray consisting of 6,893 N. punctiforme genes was used to identify the global transcription patterns at single time points in the three developmental states, compared to those in ammonium-grown time zero cultures. Analysis of ammonium-grown cultures yielded a transcriptome of 2,935 genes, which is nearly twice the size of a soluble proteome. The NH(4)(+)-grown transcriptome was enriched in genes encoding core metabolic functions. A steady-state N(2)-grown (heterocyst-containing) culture showed differential transcription of 495 genes, 373 of which were up-regulated. The majority of the up-regulated genes were predicted from studies of heterocyst differentiation and N(2) fixation; other genes are candidates for more detailed genetic analysis. Three days into the developmental process, akinetes showed a similar number of differentially expressed genes (497 genes), which were equally up- and down-regulated. The down-regulated genes were enriched in core metabolic functions, consistent with entry into a nongrowth state. There were relatively few adaptive genes up-regulated in 3-day akinetes, and there was little overlap with putative heterocyst developmental genes. There were 1,827 differentially transcribed genes in 24-h hormogonia, which was nearly fivefold greater than the number in akinete-forming or N(2)-fixing cultures. The majority of the up-regulated adaptive genes were genes encoding proteins for signal transduction and transcriptional regulation, which is characteristic of a motile filament that is poised to sense and respond to the environment. The greatest fraction of the 883 down-regulated genes was involved in core metabolism, also consistent with entry into a nongrowth state. The differentiation of heterocysts (steady state, N(2) grown), akinetes, and hormogonia appears to involve the up-regulation of genes distinct for each state.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Bacterial Proteins / physiology*
  • Cell Differentiation / drug effects
  • Cell Differentiation / genetics
  • Gene Expression Profiling*
  • Gene Expression Regulation, Bacterial / drug effects
  • Genes, Bacterial
  • Genome, Bacterial
  • Nitrogen / pharmacology*
  • Nostoc / cytology
  • Nostoc / drug effects
  • Nostoc / genetics*
  • Oligonucleotide Array Sequence Analysis
  • Quaternary Ammonium Compounds / pharmacology

Substances

  • Bacterial Proteins
  • Quaternary Ammonium Compounds
  • Nitrogen