Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing

J Nanosci Nanotechnol. 2007 Mar;7(3):891-7. doi: 10.1166/jnn.2007.217.

Abstract

This paper describes the fabrication and evaluation of carbon nanotube (CNT) electrodes grown on stainless steel (SS) plate and wire for electrochemical sensor applications. Multi-wall carbon nanotubes with different diameters were grown on the SS plate and wire by chemical vapor deposition from an ethylene precursor. The SS provides a good electrical and mechanical connection to the CNT, and the SS is a tough substrate. The SS part of the electrode was electrically insulated from the analyte so that only the CNT were active in sensing. Cyclic voltammetry for the reduction of 6 mM K3Fe(CN)6 in a 1.0 M KNO3 supporting electrolyte was performed to examine the redox behavior of the CNT-SS electrode. The cyclic voltammograms showed sigmoidal-like shapes, indicating that mass transport around the electrodes is dominated by radial diffusion. Based on the cyclic voltammograms, the effective area of the CNT-SS electrodes and the number of individual CNTs were estimated. These results indicate that the CNT-SS plate and wire electrodes are good candidates to develop practical in vivo biosensors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques
  • Electrochemistry
  • Microelectrodes
  • Microscopy, Electron, Scanning
  • Nanotechnology
  • Nanotubes, Carbon / ultrastructure*
  • Nanowires / ultrastructure
  • Stainless Steel

Substances

  • Nanotubes, Carbon
  • Stainless Steel