Functional analysis of fibrin {gamma}-chain cross-linking by activated factor XIII: determination of a cross-linking pattern that maximizes clot stiffness

Blood. 2007 Aug 1;110(3):902-7. doi: 10.1182/blood-2007-01-066837. Epub 2007 Apr 13.

Abstract

Activated coagulation factor XIII (FXIIIa) cross-links the gamma-chains of fibrin early in clot formation. Cross-linking of the alpha-chains occurs more slowly, leading to high molecular weight multimer formations that can also contain gamma-chains. To study the contribution of FXIIIa-induced gamma-chain cross-linking on fibrin structure and function, we created 2 recombinant fibrinogens (gammaQ398N/Q399N/K406R and gammaK406R) that modify the gamma-chain cross-linking process. In gammaK406R, gamma-dimer cross-links were absent, but FXIIIa produced a cross-linking pattern similar to that observed in tissue transglutaminase cross-linked fibrin(ogen) with mainly alpha-gamma cross-links. In Q398N/Q399N/K406R, cross-links with any gamma-chain involvement were completely absent, and only alpha-chain cross-linking occurred. Upon cross-linking, recombinant normal fibrin yielded a 3.5-fold increase in stiffness, compared with a 2.5-fold increase by alpha-chain cross-linking alone (gammaQ398N/Q399N/K406R). gammaK406R fibrin showed a 1.5-fold increase in stiffness after cross-linking. No major differences in clot morphology, polymerization, and lysis rates were observed, although fiber diameter was slightly lower in cross-linked normal fibrin relative to the variants. Our results show that gamma-chain cross-linking contributes significantly to clot stiffness, in particular through gamma-dimer formation; alpha-gamma hybrid cross-links had the smallest impact on clot stiffness.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution
  • Factor XIIIa / chemistry*
  • Fibrin / analysis*
  • Fibrin / chemistry
  • Fibrin / genetics
  • Humans
  • Multiprotein Complexes / analysis*
  • Mutation, Missense
  • Recombinant Proteins / analysis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics

Substances

  • Multiprotein Complexes
  • Recombinant Proteins
  • Fibrin
  • Factor XIIIa