Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer

Chemistry. 2007;13(17):4969-80. doi: 10.1002/chem.200601759.

Abstract

Poly(aminoimino)heptazine, otherwise known as Liebig's melon, whose composition and structure has been subject to multitudinous speculations, was synthesized from melamine at 630 degrees C under the pressure of ammonia. Electron diffraction, solid-state NMR spectroscopy, and theoretical calculations revealed that the nanocrystalline material exhibits domains well-ordered in two dimensions, thereby allowing the structure solution in projection by electron diffraction. Melon ([C(6)N(7)(NH(2))(NH)](n), plane group p2 gg, a=16.7, b=12.4 A, gamma=90 degrees, Z=4), is composed of layers made up from infinite 1D chains of NH-bridged melem (C(6)N(7)(NH(2))(3)) monomers. The strands adopt a zigzag-type geometry and are tightly linked by hydrogen bonds to give a 2D planar array. The inter-layer distance was determined to be 3.2 A from X-ray powder diffraction. The presence of heptazine building blocks, as well as NH and NH(2) groups was confirmed by (13)C and (15)N solid-state NMR spectroscopy using (15)N-labeled melon. The degree of condensation of the heptazine core was further substantiated by a (15)N direct excitation measurement. Magnetization exchange observed between all (15)N nuclei using a fp-RFDR experiment, together with the CP-MAS data and elemental analysis, suggests that the sample is mainly homogeneous in terms of its basic composition and molecular building blocks. Semiempirical, force field, and DFT/plane wave calculations under periodic boundary conditions corroborate the structure model obtained by electron diffraction. The overall planarity of the layers is confirmed and a good agreement is obtained between the experimental and calculated NMR chemical shift parameters. The polymeric character and thermal stability of melon might render this polymer a pre-stage of g-C(3)N(4) and portend its use as a promising inert material for a variety of applications in materials and surface science.