Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions

Int J Food Microbiol. 2007 May 30;116(3):372-83. doi: 10.1016/j.ijfoodmicro.2007.02.017. Epub 2007 Mar 6.

Abstract

Staphylococcus aureus and its biofilm formation are recognized as a serious clinical problem. S. aureus is also a food borne pathogen, and little is known regarding biofilm formation of food-related strains. We have studied biofilm formation of both food-related and clinical S. aureus strains grown under different stress conditions (temperature, sodium chloride, glucose and ethanol) relevant for food processing. Strong biofilm formers were identified among food-related S. aureus strains, and biofilm formation was affected by environmental conditions relevant for the food industry. The results showed that temperatures suboptimal for growth increased the production of biofilm. The combined presence of sodium chloride and glucose enhanced the biofilm formation. Both temperature and osmolarity affected the expression of several biofilm associated genes (e.g. icaA and rbf). Variations in gene expression (e.g. icaA, agrA and sigB) between strains were also observed. Our results support the existence of both ica-dependent and ica-independent mechanisms of biofilm production in S. aureus. The phenotypic and genotypic results showed highly diverse and complex patterns of biofilm formation in S. aureus. This clearly demonstrates that caution must be exercised before drawing general conclusions about gene expression in S. aureus in relation to regulation of biofilm formation. The results are relevant for food safety as they indicate that food processing conditions could promote biofilm formation by S. aureus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biofilms / growth & development*
  • Consumer Product Safety
  • Ethanol / pharmacology
  • Food Handling / methods*
  • Food Microbiology*
  • Gene Expression Regulation, Bacterial*
  • Glucose / pharmacology
  • Sodium Chloride / pharmacology
  • Staphylococcal Food Poisoning / microbiology
  • Staphylococcal Food Poisoning / prevention & control
  • Staphylococcus aureus / genetics
  • Staphylococcus aureus / growth & development*
  • Temperature

Substances

  • Ethanol
  • Sodium Chloride
  • Glucose