Reverse micelles: inert nano-reactors or physico-chemically active guides of the capped reactions

Adv Colloid Interface Sci. 2007 May 31;133(1):23-34. doi: 10.1016/j.cis.2007.02.002. Epub 2007 Feb 27.

Abstract

Reverse micelles present self-assembled multi-molecular entities formed within specific compositional ranges of water-in-oil microemulsions. The structure of a reverse micelle is typically represented as nano-sized droplet of a polar liquid phase, capped by a monolayer of surfactant molecules, and uniformly distributed within a non-polar, oil phase. Although their role in serving as primitive membranes for encapsulation of primordial self-replicating chemical cycles that anticipated the very origins of life has been proposed, their first application for 'parent(hesis)ing' chemical reactions with an aim to produce 'templated' 2D arrays of nanoparticles dates back to only 25 years ago. Reverse micelles have since then been depicted as passive nano-reactors that via their shapes template the growing crystalline nuclei into narrowly dispersed or even perfectly uniform nano-sized particles. Despite this, numerous examples can be supported, where from deviations from the simple unilateral correlations between size and shape distribution of reverse micelles and the particles formed within may be reasonably implied. A rather richer, dynamical role of reverse micelles, with potential significance in the research and design of complex, self-assembly synthesis pathways, as well as possible adoption of their application as an aspect of biomimetic approach, is suggested herein.