Mathematical model for the prediction of the overall profile of in vitro solute release from polymer networks

J Colloid Interface Sci. 2007 Jun 1;310(1):128-35. doi: 10.1016/j.jcis.2006.12.058. Epub 2007 Mar 26.

Abstract

The loading of solutes onto and their release from hydrogel-based devices can be better understood when they are treated as a partition phenomenon. Partition activity (alpha) is a parameter that determines the existence of partition phenomena. It expresses the physical chemical affinities of the solute between the solvent and hydrogel phases. When alpha=0, there is no release of the solute from the hydrogel; however, if alpha>0, there is partitioning of the solute between the solvent and the hydrogel phases, and release of the solute from the hydrogel can be observed. The mathematic model proposed here predicts the overall release profile of vitamin B(12), methylene blue (MB), and acid orange 7 (AO) from semi-interpenetrating network (semi-IPN) hydrogels composed of PNIPAAm and PAAm. Experimental release tests demonstrated that alterations on variables of the system change both the released fraction and the release rate of such solutes, confirmed by the changes on values of alpha (an equilibrium parameter) and k(R) (an kinetic parameter). The modeling of solute release describes the alpha effects on release of the solute from polymer networks. The solute release mechanism is viewed here as a diffusional transport process and as a partition phenomenon. The partitioning of the solutes occurs between the solvent phase and the hydrogel phase, and the possible physical chemical affinities of the solute between hydrogel and solvent are considered.