Cluster core controlled reactions of substitution of terminal bromide ligands by triphenylphosphine in octahedral rhenium chalcobromide complexes

J Am Chem Soc. 2007 Mar 28;129(12):3714-21. doi: 10.1021/ja0668062. Epub 2007 Mar 3.

Abstract

Reactions of rhenium chalcobromides Cs4[{Re6(mu3-S)8}Br6].2H2O, Cs3[{Re6(mu3-Se)8}Br6].2H2O, Cs3[{Re6(mu3-Q)7(mu3-Br)}Br6].H2O (Q = S, Se), and K2[{Re6(mu3-S)6(mu3-Br)2}Br6] with molten triphenylphosphine (PPh3) have resulted in a family of novel molecular hybrid inorganic-organic cluster compounds. Six octahedral rhenium cluster complexes containing PPh3 ligands with general formula [{Re6(mu3-Q)8-n(mu3-Br)n}(PPh3)4-nBrn+2] (Q = S, n = 0, 1, 2; Q = Se, n = 0, 1) have been synthesized and characterized by X-ray single-crystal diffraction and elemental analyses, 31P{1H} NMR, luminescent measurements, and quantum-chemical calculations. It was found that the number of terminal PPh3 ligands in the complexes is controlled by the composition and consequently by the charge of the cluster core {Re6Q8-nBrn}n+2. In crystal structures of the complexes with mixed chalcogen/bromine ligands in the cluster core all positions of a cube [Q8-nBrn] are ordered and occupied exclusively by Q or Br atoms. Luminescence characteristics of the compounds trans-[{Re6Q8}(PPh3)4Br2] and fac-[{Re6Se7Br}(PPh3)3Br3] (Q = S, Se) have been investigated in CH2Cl2 solution and the broad emission spectra in the range of 600-850 nm were observed.