A lattice protein with an amyloidogenic latent state: stability and folding kinetics

J Phys Chem B. 2007 Mar 15;111(10):2675-87. doi: 10.1021/jp067027a. Epub 2007 Feb 22.

Abstract

We have designed a model lattice protein that has two stable folded states, the lower free energy native state and a latent state of somewhat higher energy. The two states have a sizable part of their structures in common (two "alpha-helices") and differ in the content of "alpha-helices" and "beta-strands" in the rest of their structures; i.e. for the native state, this part is alpha-helical, and for the latent state it is composed of beta-strands. Thus, the lattice protein free energy surface mimics that of amyloidogenic proteins that form well organized fibrils under appropriate conditions. A Go-like potential was used and the folding process was simulated with a Monte Carlo method. To gain insight into the equilibrium free energy surface and the folding kinetics, we have combined standard approaches (reduced free energy surfaces, contact maps, time-dependent populations of the characteristic states, and folding time distributions) with a new approach. The latter is based on a principal coordinate analysis of the entire set of contacts, which makes possible the introduction of unbiased reaction coordinates and the construction of a kinetic network for the folding process. The system is found to have four characteristic basins, namely a semicompact globule, an on-pathway intermediate (the bifurcation basin), and the native and latent states. The bifurcation basin is shallow and consists of the structure common to the native and latent states, with the rest disorganized. On the basis of the simulation results, a simple kinetic model describing the transitions between the characteristic states was developed, and the rate constants for the essential transitions were estimated. During the folding process the system dwells in the bifurcation basin for a relatively short time before it proceeds to the native or latent state. We suggest that such a bifurcation may occur generally for proteins in which native and latent states have a sizable part of their structures in common. Moreover, there is the possibility of introducing changes in the system (e.g., mutations), which guide the system toward the native or misfolded state.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid / chemistry
  • Computer Simulation*
  • Kinetics
  • Models, Theoretical*
  • Monte Carlo Method
  • Mutation
  • Protein Folding*
  • Protein Structure, Secondary
  • Proteins / chemistry*
  • Proteins / genetics

Substances

  • Amyloid
  • Proteins