Molecular dynamics of a short-range ordered smectic phase nanoconfined in porous silicon

J Chem Phys. 2007 Feb 14;126(6):064902. doi: 10.1063/1.2435366.

Abstract

4-n-octyl-4-cyanobiphenyl has been recently shown to display an unusual sequence of phases when confined into porous silicon (PSi). The gradual increase of oriented short-range smectic (SRS) correlations in place of a phase transition has been interpreted as a consequence of the anisotropic quenched disorder induced by confinement in PSi. Combining two quasielastic neutron scattering experiments with complementary energy resolutions, the authors present the first investigation of the individual molecular dynamics of this system. A large reduction of the molecular dynamics is observed in the confined liquid phase, as a direct consequence of the boundary conditions imposed by the confinement. Temperature fixed window scans reveal a continuous glasslike reduction of the molecular dynamics of the confined liquid and SRS phases on cooling down to 250 K, where a solidlike behavior is finally reached by a two-step crystallization process.