Synthesis and supramolecular organization of amphiphilic diblock copolymers combining poly(N,N-dimethylamino-2-ethyl methacrylate) and poly(epsilon-caprolactone)

Langmuir. 2007 Feb 27;23(5):2339-45. doi: 10.1021/la0620657.

Abstract

Well-defined poly(epsilon-caprolactone) (PCL)/poly(N,N-dimethylamino-2-ethyl methacrylate (PDMAEMA) diblock copolymers were synthesized, and their self-assembly was investigated as micelles both in aqueous solutions and in thin solid deposits. The synthetic approach combines controlled ring opening polymerization (ROP) of epsilon-caprolactone (CL) and atom transfer radical polymerization (ATRP) of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). Diblock copolymers were prepared by ROP of CL initiated by (Al(OiPr)3), followed by quantitative reaction of the PCL hydroxy end-groups with bromoisobutyryl bromide. The alpha-isopropyloxy omega-2-bromoisobutyrate poly(epsilon-caprolactone) (PCL-Br) obtained was used as a macroinitiator for the ATRP of DMAEMA. The molecular characterization of those diblock copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self-assembly of the copolymers into micellar aggregates in aqueous media was followed with dynamic light scattering (DLS), as a function of concentration and the pH. In parallel, the morphology of the solid deposits of those micelles was examined with atomic force microscopy (AFM).