Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase

J Biol Chem. 2007 Apr 20;282(16):11982-95. doi: 10.1074/jbc.M700356200. Epub 2007 Feb 16.

Abstract

Ectodomain shedding and intramembrane proteolysis of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretase are involved in the pathogenesis of Alzheimer disease (AD). Increased proteolytic processing and secretion of another membrane protein, the interleukin-1 receptor II (IL-1R2), have also been linked to the pathogenesis of AD. IL-1R2 is a decoy receptor that may limit detrimental effects of IL-1 in the brain. At present, the proteolytic processing of IL-1R2 remains little understood. Here we show that IL-1R2 can be proteolytically processed in a manner similar to APP. IL-1R2 expressed in human embryonic kidney 293 cells first undergoes ectodomain shedding in an alpha-secretase-like manner, resulting in secretion of the IL-1R2 ectodomain and the generation of an IL-1R2 C-terminal fragment. This fragment undergoes further intramembrane proteolysis by gamma-secretase, leading to the generation of the soluble intracellular domain of IL-1R2. Intramembrane cleavage of IL-1R2 was abolished by a highly specific inhibitor of gamma-secretase and was absent in mouse embryonic fibroblasts deficient in gamma-secretase activity. Surprisingly, the beta-secretase BACE1 and its homolog BACE2 increased IL-1R2 secretion resulting in C-terminal fragments nearly identical to the ones generated by the alpha-secretase-like cleavage. This suggests that both proteases may act as alternative alpha-secretase-like proteases. Importantly, BACE1 and BACE2 did not cleave several other membrane proteins, demonstrating that both proteases do not contribute to general membrane protein turnover but only cleave specific proteins. This study reveals a similar proteolytic processing of IL-1R2 and APP and may provide an explanation for the increased IL-1R2 secretion observed in AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amyloid Precursor Protein Secretases / metabolism*
  • Amyloid beta-Protein Precursor / metabolism*
  • Animals
  • Aspartic Acid Endopeptidases / metabolism
  • COS Cells
  • Chlorocebus aethiops
  • Humans
  • Interleukin-1 / metabolism
  • Mice
  • Molecular Sequence Data
  • Receptors, Interleukin-1 Type II / metabolism*

Substances

  • Amyloid beta-Protein Precursor
  • Interleukin-1
  • Receptors, Interleukin-1 Type II
  • Amyloid Precursor Protein Secretases
  • Aspartic Acid Endopeptidases
  • BACE2 protein, human
  • BACE1 protein, human