Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing

J Environ Sci (China). 2006;18(5):921-6. doi: 10.1016/s1001-0742(06)60015-6.

Abstract

Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, A ilanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM, (particulate matter less than 10 microm in aerodynamic diameter; 98.4%) and PM25 (particulate matter less than 2.5 microm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CaSO4 x H20, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4 x H20 was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants*
  • Microscopy, Electron, Scanning
  • Particle Size
  • Plant Leaves / chemistry*
  • Plant Leaves / ultrastructure

Substances

  • Air Pollutants