Reaction and stabilizing mechanism of the cross-type macromonomers in the dispersion polymerization of styrene

J Colloid Interface Sci. 2007 Apr 1;308(1):130-41. doi: 10.1016/j.jcis.2006.12.057. Epub 2006 Dec 23.

Abstract

The cross-type (C-VUM) and linear-type (L-VUM) bifunctional vinyl urethane macromonomers and polystyrene (PS) using these macromonomers were synthesized in the dispersion polymerization in ethanol, and the reaction and stabilizing mechanism of the macromonomers was proposed. The structural verification of the macromonomers and PS was studied using (1)H NMR. The weight-average particle size of C-PS (PS prepared with C-VUM) and L-PS (PS prepared with L-VUM) decreased from 4.41 to 1.36 microm and from 3.56 to 1.52 microm, whereas the average-molecular weight of those increased from 34,100 to 100,500 g/mol and from 32,200 to 71,800 g/mol, respectively. The XPS result showed that the C-PS was anchored with a larger amount of PEG than that of the L-PS on the particle surface. Thus, the reaction and stabilizing mechanism of the macromonomers for the formation of PS particles is proposed as the following. The particle surface of the C-PS is surrounded by a large amount of tail shaped macromonomers leading to higher molecular weights and smaller particle sizes. On the other hand, the particle surface of the L-PS is comprised of relatively small amounts of loop shaped macromonomers inducing lower molecular weights and larger particles of L-PS than C-PS.