Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity

J Theor Biol. 2007 Apr 21;245(4):638-43. doi: 10.1016/j.jtbi.2006.11.012. Epub 2006 Nov 21.

Abstract

Gene regulatory dynamics are governed by molecular processes and therefore exhibits an inherent stochasticity. However, for the survival of an organism it is a strict necessity that this intrinsic noise does not prevent robust functioning of the system. It is still an open question how dynamical stability is achieved in biological systems despite the omnipresent fluctuations. In this paper we investigate the cell cycle of the budding yeast Saccharomyces cerevisiae as an example of a well-studied organism. We study a genetic network model of 11 genes that coordinate the cell-cycle dynamics using a modeling framework which generalizes the concept of discrete threshold dynamics. By allowing for fluctuations in the process times, we introduce noise into the model, accounting for the effects of biochemical stochasticity. We study the dynamical attractor of the cell cycle and find a remarkable robustness against fluctuations of this kind. We identify mechanisms that ensure reliability in spite of fluctuations: 'Catcher states' and persistence of activity levels contribute significantly to the stability of the yeast cell cycle despite the inherent stochasticity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle / genetics*
  • Computer Simulation
  • Gene Expression Regulation, Fungal / genetics
  • Genes, Fungal / genetics
  • Models, Genetic
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Stochastic Processes
  • Time Factors

Substances

  • Saccharomyces cerevisiae Proteins