Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes

J Phys Chem B. 2006 Dec 28;110(51):25761-8. doi: 10.1021/jp064676d.

Abstract

Molecular dynamics (MD) simulations were performed to study the structural properties of water molecules confined in functionalized carbon nanotubes (CNTs). Four CNTs, two armchair-type (6, 6), (7, 7) and two zigzag-type (10, 0), (12, 0) CNTs, representing different helicities and different diameters, were chosen and functionalized at their open ends by the hydrophilic -COOH and the hydrophobic -CH3 groups. The structural properties of water molecules inside the functionalized CNTs, including the orientation distributions of dipole moment and O-H bonds, the length of the single-file water chain, and the average number of hydrogen bonds, were analyzed during a process of simulations. MD simulation results in this work showed that the -CH3 functional groups exert little special effects on the structural properties of water molecules. It is mainly due to the relatively small size of the -CH3 group and its hydrophobic nature, which is consistent with hydrophobic CNTs. For CNTs functionalized by -COOH groups, the configurations of -COOH groups, incurvature or excurvature, determine whether water molecules can enter the CNTs. The incurvature or excurvature configurations of -COOH groups are the results of synergy effects of the CNTs' helicity and diameter and control the flow direction of water molecules in CNTs.