In situ imaging of field-induced hexagonal columns in magnetite ferrofluids

Phys Rev Lett. 2006 Nov 3;97(18):185702. doi: 10.1103/PhysRevLett.97.185702. Epub 2006 Nov 2.

Abstract

Field-induced structures in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). The field-induced columnar phase locally exhibits hexagonal symmetry and confirms the structures observed in simulations for ferromagnetic dipolar fluids in 2D. The columns are distorted by lens-shaped voids, due to the weak interchain attraction relative to field-directed dipole-dipole attraction. Both dipolar coupling and the dipole concentration determine the dimensions and the spatial arrangement of the columns. Their regular spacing manifests long-range end-pole repulsions that eventually dominate the fluctuation-induced attractions between dipole chains that initiate the columnar transition.