Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition

J Phys Chem B. 2006 Nov 30;110(47):23920-5. doi: 10.1021/jp057171g.

Abstract

Highly aligned arrays of multiwalled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by chemical vapor deposition (CVD). The effect of the substrate design and the process parameters on the growth mechanism were studied. Adding water vapor to the reaction gas mixture of hydrogen and ethylene enhanced the growth which led to synthesis of longer CNT arrays with high density. Environmental scanning electron microscopy (ESEM), energy-dispersive spectroscopy (EDS), and atomic force microscopy (AFM) were used to analyze the CNT morphology and composition. Quadrupole mass spectroscopy (QMS) provided in-situ information on the gas spices within the reaction zone. On the basis of results, we verified the top growth mechanism and evaluated the reason of decline and stoppage of the CNT growth after extended period of deposition. Multilayered Si substrates with a top film of Al2O3, having appropriate roughness, provide favorable conditions to form catalyst islands with uniform distribution and size. Using water-assisted CVD process and optimized substrate design, our group succeeded to grow vertically aligned, patterned MWCNT up to 4-mm long. The arrays were of high purity and weak adhesion which allowed to be peeled off easily from the substrate.