Amphiphilicity-driven organization of nanoparticles into discrete assemblies

J Am Chem Soc. 2006 Nov 29;128(47):15098-9. doi: 10.1021/ja066708g.

Abstract

We present a method for organizing metallic nanoparticles in solution that is based on the hydrophobic effect and does not require either hydrogen bonding or molecular recognition. When amphiphilic V-shaped molecules are attached to a gold cluster, an aggregation process ensues in aqueous solution and leads to the formation of well-defined cylindrical and vesicular nanoarrays of particles. The metallic clusters densely pack at the boundary separating the hydrophobic core from the hydrophilic corona of the hybrid micelle-like aggregates. This design allows one to assemble and disassemble the nanoparticles in a reversible manner and control the size and the morphology of the arrays by changing the conditions of the solution preparation. The versatility of this method is demonstrated by its applicability to different metals with covalently attached amphiphilic arms with various chemical compositions (PS-PEO and PB-PEO) and molecular weights.